Lecture 30

Meyer's Theorem, Circuit Lower Bound

Meyer's Theorem

Meyer's Theorem

Theorem: If EXP $\subseteq \mathrm{P}_{/ \text {poly }}$, then $\operatorname{EXP}=\Sigma_{2}^{p}$.

Meyer's Theorem

Theorem: If EXP $\subseteq \mathrm{P}_{/ \text {poly }}$, then EXP $=\Sigma_{2}^{p}$.
Proof:

Meyer's Theorem

Theorem: If EXP $\subseteq \mathrm{P}_{/ \text {poly }}$, then EXP $=\Sigma_{2}^{p}$.
Proof: Let $L \in \operatorname{EXP}$ and M be an oblivious TM that decides L in $O\left(2^{n^{c}}\right)$ time.

Meyer's Theorem

Theorem: If EXP $\subseteq \mathrm{P}_{/ \text {poly }}$, then $\operatorname{EXP}=\Sigma_{2}^{p}$.
Proof: Let $L \in \operatorname{EXP}$ and M be an oblivious TM that decides L in $O\left(2^{n^{c}}\right)$ time.

$$
x \in L \Longleftrightarrow \exists \text { a sequence of snapshots } T_{1}, T_{2}, \ldots, T_{O\left(2^{n}\right)} \text { such that } \ldots \ldots
$$

Meyer's Theorem

Theorem: If EXP $\subseteq \mathrm{P}_{/ \text {poly }}$, then $\operatorname{EXP}=\Sigma_{2}^{p}$.
Proof: Let $L \in \operatorname{EXP}$ and M be an oblivious TM that decides L in $O\left(2^{n^{c}}\right)$ time.

$$
x \in L \Longleftrightarrow \exists \text { a sequence of snapshots } T_{1}, T_{2}, \ldots, T_{O\left(2^{n}\right)} \text { such that } \ldots \ldots
$$

Define a related language L^{\prime}

Meyer's Theorem

Theorem: If EXP $\subseteq \mathrm{P}_{/ \text {poly }}$, then EXP $=\Sigma_{2}^{p}$.
Proof: Let $L \in \operatorname{EXP}$ and M be an oblivious TM that decides L in $O\left(2^{n^{c}}\right)$ time.

$$
x \in L \Longleftrightarrow \exists \text { a sequence of snapshots } T_{1}, T_{2}, \ldots, T_{O\left(2^{n}\right)} \text { such that } \ldots \ldots
$$

Define a related language L^{\prime}

$$
L^{\prime}=\{(x, i, j) \mid j \text { th bit of the } i \text { th snapshot is } 1 \text { when } M \text { runs on } x\}
$$

Meyer's Theorem

Theorem: If EXP $\subseteq \mathrm{P}_{/ \text {poly }}$, then EXP $=\Sigma_{2}^{p}$.
Proof: Let $L \in \operatorname{EXP}$ and M be an oblivious TM that decides L in $O\left(2^{n^{c}}\right)$ time.

$$
x \in L \Longleftrightarrow \exists \text { a sequence of snapshots } T_{1}, T_{2}, \ldots, T_{O\left(2^{n}\right)} \text { such that } \ldots \ldots
$$

Define a related language L^{\prime}

$$
L^{\prime}=\{(x, i, j) \mid j \text { th bit of the } i \text { th snapshot is } 1 \text { when } M \text { runs on } x\}
$$

Now,

Meyer's Theorem

Theorem: If EXP $\subseteq \mathrm{P}_{/ \text {poly }}$, then EXP $=\Sigma_{2}^{p}$.
Proof: Let $L \in \operatorname{EXP}$ and M be an oblivious TM that decides L in $O\left(2^{n^{c}}\right)$ time.

$$
x \in L \Longleftrightarrow \exists \text { a sequence of snapshots } T_{1}, T_{2}, \ldots, T_{O\left(2^{n}\right)} \text { such that } \ldots \ldots
$$

Define a related language L^{\prime}

$$
L^{\prime}=\{(x, i, j) \mid j \text { th bit of the } i \text { th snapshot is } 1 \text { when } M \text { runs on } x\}
$$

Now,

$$
L \in \operatorname{EXP}
$$

Meyer's Theorem

Theorem: If EXP $\subseteq \mathrm{P}_{/ \text {poly }}$, then EXP $=\Sigma_{2}^{p}$.
Proof: Let $L \in \operatorname{EXP}$ and M be an oblivious TM that decides L in $O\left(2^{n^{c}}\right)$ time.

$$
x \in L \Longleftrightarrow \exists \text { a sequence of snapshots } T_{1}, T_{2}, \ldots, T_{O\left(2^{n}\right)} \text { such that } \ldots \ldots
$$

Define a related language L^{\prime}

$$
L^{\prime}=\{(x, i, j) \mid j \text { th bit of the } i \text { th snapshot is } 1 \text { when } M \text { runs on } x\}
$$

Now,

$$
L \in \operatorname{EXP} \Longrightarrow L^{\prime} \in \operatorname{EXP}
$$

Meyer's Theorem

Theorem: If EXP $\subseteq \mathrm{P}_{/ \text {poly }}$, then EXP $=\Sigma_{2}^{p}$.
Proof: Let $L \in \operatorname{EXP}$ and M be an oblivious TM that decides L in $O\left(2^{n^{c}}\right)$ time.

$$
x \in L \Longleftrightarrow \exists \text { a sequence of snapshots } T_{1}, T_{2}, \ldots, T_{O\left(2^{n}\right)} \text { such that } \ldots \ldots
$$

Define a related language L^{\prime}

$$
L^{\prime}=\{(x, i, j) \mid j \text { th bit of the } i \text { th snapshot is } 1 \text { when } M \text { runs on } x\}
$$

Now,

$$
L \in \operatorname{EXP} \Longrightarrow L^{\prime} \in \operatorname{EXP} \Longrightarrow L^{\prime} \in \mathrm{P} / \text { poly }
$$

Meyer's Theorem

Theorem: If EXP $\subseteq P_{/ \text {poly }}$, then EXP $=\Sigma_{2}^{p}$.
Proof: Let $L \in \operatorname{EXP}$ and M be an oblivious TM that decides L in $O\left(2^{n^{c}}\right)$ time.

$$
x \in L \Longleftrightarrow \exists \text { a sequence of snapshots } T_{1}, T_{2}, \ldots, T_{O\left(2^{n}\right)} \text { such that } \ldots \ldots
$$

Define a related language L^{\prime}

$$
L^{\prime}=\{(x, i, j) \mid j \text { th bit of the } i \text { th snapshot is } 1 \text { when } M \text { runs on } x\}
$$

Now,

$$
L \in \operatorname{EXP} \Longrightarrow L^{\prime} \in \operatorname{EXP} \Longrightarrow L^{\prime} \in \mathrm{P} / \text { poly } \Longrightarrow
$$

Meyer's Theorem

Theorem: If EXP $\subseteq P_{/ \text {poly }}$, then EXP $=\Sigma_{2}^{p}$.
Proof: Let $L \in \operatorname{EXP}$ and M be an oblivious TM that decides L in $O\left(2^{n^{c}}\right)$ time.

$$
x \in L \Longleftrightarrow \exists \text { a sequence of snapshots } T_{1}, T_{2}, \ldots, T_{O\left(2^{n}\right)} \text { such that } \ldots \ldots
$$

Define a related language L^{\prime}

$$
L^{\prime}=\{(x, i, j) \mid j \text { th bit of the } i \text { th snapshot is } 1 \text { when } M \text { runs on } x\}
$$

Now,

$$
L \in \operatorname{EXP} \Longrightarrow L^{\prime} \in \operatorname{EXP} \Longrightarrow L^{\prime} \in \mathrm{P}_{/ \text {poly }} \Longrightarrow \begin{gathered}
\exists \text { a polysize circuit family } C \text { that } \\
\text { on input }(x, i, j) \text { outputs the } \\
j \text { th bit of } i \text { th snapshot of } M \text { 's run on } x .
\end{gathered}
$$

Meyer's Theorem

Theorem: If EXP $\subseteq P_{/ \text {poly }}$, then EXP $=\Sigma_{2}^{p}$.
Proof: Let $L \in \operatorname{EXP}$ and M be an oblivious TM that decides L in $O\left(2^{n^{c}}\right)$ time.

$$
x \in L \Longleftrightarrow \exists \text { a sequence of snapshots } T_{1}, T_{2}, \ldots, T_{O\left(2^{n}\right)} \text { such that } \ldots \ldots
$$

Define a related language L^{\prime}

$$
L^{\prime}=\{(x, i, j) \mid j \text { th bit of the } i \text { th snapshot is } 1 \text { when } M \text { runs on } x\}
$$

Now,

$$
L \in \operatorname{EXP} \Longrightarrow L^{\prime} \in \operatorname{EXP} \Longrightarrow L^{\prime} \in \mathrm{P} / \text { poly } \Longrightarrow
$$

Meyer's Theorem

Theorem: If EXP $\subseteq P_{/ \text {poly }}$, then EXP $=\Sigma_{2}^{p}$.
Proof: Let $L \in \operatorname{EXP}$ and M be an oblivious TM that decides L in $O\left(2^{n^{c}}\right)$ time.

$$
x \in L \Longleftrightarrow \exists \text { a sequence of snapshots } T_{1}, T_{2}, \ldots, T_{O\left(2^{n}\right)} \text { such that } \ldots \ldots
$$

Define a related language L^{\prime}

$$
L^{\prime}=\{(x, i, j) \mid j \text { th bit of the } i \text { th snapshot is } 1 \text { when } M \text { runs on } x\}
$$

Now,

$$
L \in \operatorname{EXP} \Longrightarrow L^{\prime} \in \operatorname{EXP} \Longrightarrow L^{\prime} \in \mathrm{P}_{/ \text {poly }} \Longrightarrow
$$

\exists a polysize circuit family D that on input (x, i) outputs the i th snapshot of M 's run on x.

Meyer's Theorem

Theorem: If EXP $\subseteq \mathrm{P}_{/ \text {poly }}$, then EXP $=\Sigma_{2}^{p}$.
Proof:

Meyer's Theorem

Theorem: If EXP $\subseteq \mathrm{P}_{/ \text {poly }}$, then EXP $=\Sigma_{2}^{p}$.
Proof: Putting L in Σ_{2}^{p} :

Meyer's Theorem

Theorem: If EXP $\subseteq \mathrm{P}_{/ \text {poly }}$, then EXP $=\Sigma_{2}^{p}$.
Proof: Putting L in Σ_{2}^{p} :

$$
x \in L
$$

Meyer's Theorem

Theorem: If EXP $\subseteq \mathrm{P}_{/ \text {poly }}$, then EXP $=\Sigma_{2}^{p}$.
Proof: Putting L in Σ_{2}^{p} :

$$
x \in L \quad \Longleftrightarrow
$$

Meyer's Theorem

Theorem: If EXP $\subseteq \mathrm{P}_{/ \text {poly }}$, then EXP $=\Sigma_{2}^{p}$.
Proof: Putting L in Σ_{2}^{p} :
\exists a circuit C

$$
x \in L \quad \Longleftrightarrow
$$

Meyer's Theorem

Theorem: If EXP $\subseteq P_{/ \text {poly }}$, then EXP $=\Sigma_{2}^{p}$.
Proof: Putting L in Σ_{2}^{p} :
\exists a circuit C s.t. $\forall i \in\left[1, O\left(2^{n^{c}}\right)\right]$

$$
x \in L \quad \Longleftrightarrow
$$

Meyer's Theorem

Theorem: If EXP $\subseteq P_{/ \text {poly }}$, then EXP $=\Sigma_{2}^{p}$.
Proof: Putting L in Σ_{2}^{p} :
\exists a circuit C s.t. $\forall i \in\left[1, O\left(2^{n^{c}}\right)\right]$ the following are true:

$$
x \in L \quad \Longleftrightarrow
$$

Meyer's Theorem

Theorem: If EXP $\subseteq \mathrm{P} /$ poly, then $\operatorname{EXP}=\Sigma_{2}^{p}$.
Proof: Putting L in Σ_{2}^{p} :
\exists a circuit C s.t. $\forall i \in\left[1, O\left(2^{n^{c}}\right)\right]$ the following are true:

$$
x \in L \Longleftrightarrow 1) \text { If } i=1 \text {, then } C(x, i) \text { is the starting snapshot of } M \text { 's run on } x \text {. }
$$

Meyer's Theorem

Theorem: If EXP $\subseteq \mathrm{P}_{/ \text {poly }}$, then EXP $=\Sigma_{2}^{p}$.
Proof: Putting L in Σ_{2}^{p} :
\exists a circuit C s.t. $\forall i \in\left[1, O\left(2^{n^{c}}\right)\right]$ the following are true:
$x \in L \quad \Longleftrightarrow 1$) If $i=1$, then $C(x, i)$ is the starting snapshot of M 's run on x.
2) If $i=O\left(2^{n^{c}}\right)$, then $C(x, i)$ is the accepting snapshot of M 's run on x.

Meyer's Theorem

Theorem: If EXP $\subseteq \mathrm{P}_{/ \text {poly }}$, then EXP $=\Sigma_{2}^{p}$.
Proof: Putting L in Σ_{2}^{p} :
\exists a circuit C s.t. $\forall i \in\left[1, O\left(2^{n^{c}}\right)\right]$ the following are true:

$$
\begin{aligned}
& x \in L \quad \Longleftrightarrow \quad \begin{array}{l}
\text { 1) If } i=1 \text {, then } C(x, i) \text { is the starting snapshot of } M \text { 's run on } x . \\
\text { 2) If } i=O\left(2^{n^{c}}\right) \text {, then } C(x, i) \text { is the accepting snapshot of } M \text { 's run on } x . \\
\text { 3) If } i>1, C(x, i)=F\left(C(x, i-1), x_{\text {inputpos }(i)}, C(x, \operatorname{prev}(i))\right)
\end{array}
\end{aligned}
$$

Meyer's Theorem

Theorem: If EXP $\subseteq \mathrm{P}_{/ \text {poly }}$, then EXP $=\Sigma_{2}^{p}$.
Proof: Putting L in Σ_{2}^{p} :
\exists a circuit C s.t. $\forall i \in\left[1, O\left(2^{n^{c}}\right)\right]$ the following are true:

$$
\begin{aligned}
& x \in L \quad \Longleftrightarrow \quad \text { 1) If } i=1 \text {, then } C(x, i) \text { is the starting snapshot of } M^{\prime} \text { 's run on } x . \\
& \text { 2) If } i=O\left(2^{n^{c}}\right) \text {, then } C(x, i) \text { is the accepting snapshot of } M^{\prime} \text { 's run on } x . \\
& \text { 3) If } i>1, C(x, i)=F\left(C(x, i-1), x_{\text {inputpos }(i)}, C(x, \operatorname{prev}(i))\right)
\end{aligned}
$$

Polytime TM N exists that on input (x, C, i)

Meyer's Theorem

Theorem: If EXP $\subseteq \mathrm{P}_{/ \text {poly }}$, then EXP $=\Sigma_{2}^{p}$.
Proof: Putting L in Σ_{2}^{p} :
\exists a circuit C s.t. $\forall i \in\left[1, O\left(2^{n^{c}}\right)\right]$ the following are true:

$$
\begin{aligned}
& x \in L \quad \Longleftrightarrow \quad \text { 1) If } i=1 \text {, then } C(x, i) \text { is the starting snapshot of } M^{\prime} \text { 's run on } x . \\
& \text { 2) If } i=O\left(2^{n^{c}}\right) \text {, then } C(x, i) \text { is the accepting snapshot of } M^{\prime} \text { 's run on } x . \\
& \text { 3) If } i>1, C(x, i)=F\left(C(x, i-1), x_{\text {inputpos }(i)}, C(x, \operatorname{prev}(i))\right)
\end{aligned}
$$

Polytime TM N exists that on input (x, C, i) outputs 1 iff

Meyer's Theorem

Theorem: If EXP $\subseteq \mathrm{P}_{/ \text {poly }}$, then EXP $=\Sigma_{2}^{p}$.
Proof: Putting L in Σ_{2}^{p} :
\exists a circuit C s.t. $\forall i \in\left[1, O\left(2^{n^{c}}\right)\right]$ the following are true:

$$
\begin{aligned}
& x \in L \quad \Longleftrightarrow \quad \text { 1) If } i=1 \text {, then } C(x, i) \text { is the starting snapshot of } M^{\prime} \text { 's run on } x . \\
& \text { 2) If } i=O\left(2^{n^{c}}\right) \text {, then } C(x, i) \text { is the accepting snapshot of } M^{\prime} \text { 's run on } x . \\
& \text { 3) If } i>1, C(x, i)=F\left(C(x, i-1), x_{\text {inputpos }(i)}, C(x, \operatorname{prev}(i))\right)
\end{aligned}
$$

Polytime TM N exists that on input (x, C, i) outputs 1 iff conditions 1), 2) and 3) are met.

Meyer's Theorem

Theorem: If EXP $\subseteq \mathrm{P}_{/ \text {poly }}$, then EXP $=\Sigma_{2}^{p}$.
Proof: Putting L in Σ_{2}^{p} :
\exists a circuit C s.t. $\forall i \in\left[1, O\left(2^{n^{c}}\right)\right]$ the following are true:

$$
\begin{aligned}
& x \in L \quad \Longleftrightarrow \quad \text { 1) If } i=1 \text {, then } C(x, i) \text { is the starting snapshot of } M^{\prime} \text { 's run on } x . \\
& \text { 2) If } i=O\left(2^{n^{c}}\right) \text {, then } C(x, i) \text { is the accepting snapshot of } M^{\prime} \text { 's run on } x . \\
& \text { 3) If } i>1, C(x, i)=F\left(C(x, i-1), x_{\text {inputpos }(i)}, C(x, \operatorname{prev}(i))\right)
\end{aligned}
$$

Polytime TM N exists that on input (x, C, i) outputs 1 iff conditions 1), 2) and 3) are met.
Q: How will N calculate inputpos (i) and $\operatorname{prev}(i)$ in polytime?

Meyer's Theorem

Theorem: If EXP $\subseteq \mathrm{P}_{\text {/poly }}$, then EXP $=\Sigma_{2}^{p}$.
Proof: Putting L in Σ_{2}^{p} :
\exists a circuit C s.t. $\forall i \in\left[1, O\left(2^{n^{c}}\right)\right]$ the following are true:

$$
\begin{aligned}
& x \in L \quad \Longleftrightarrow \quad \text { 1) If } i=1 \text {, then } C(x, i) \text { is the starting snapshot of } M \text { 's run on } x \text {. } \\
& \text { 2) If } i=O\left(2^{n^{c}}\right) \text {, then } C(x, i) \text { is the accepting snapshot of } M \text { 's run on } x . \\
& \text { 3) If } i>1, C(x, i)=F\left(C(x, i-1), x_{\text {inputpos }(i)}, C(x, \operatorname{prev}(i))\right)
\end{aligned}
$$

Polytime TM N exists that on input (x, C, i) outputs 1 iff conditions 1), 2) and 3) are met.
Q: How will N calculate inputpos (i) and $\operatorname{prev}(i)$ in polytime?
Oblivious TMs follow a pattern in head movement that can be used to compute

Meyer's Theorem

Theorem: If EXP $\subseteq \mathrm{P}_{/ \text {poly }}$, then EXP $=\Sigma_{2}^{p}$.
Proof: Putting L in Σ_{2}^{p} :
\exists a circuit C s.t. $\forall i \in\left[1, O\left(2^{n^{c}}\right)\right]$ the following are true:

$$
\begin{aligned}
& x \in L \quad \Longleftrightarrow \quad \text { 1) If } i=1 \text {, then } C(x, i) \text { is the starting snapshot of } M^{\prime} \text { 's run on } x . \\
& \text { 2) If } i=O\left(2^{n^{c}}\right) \text {, then } C(x, i) \text { is the accepting snapshot of } M \text { 's run on } x . \\
& \text { 3) If } i>1, C(x, i)=F\left(C(x, i-1), x_{\text {inputpos }(i)}, C(x, \operatorname{prev}(i))\right)
\end{aligned}
$$

Polytime TM N exists that on input (x, C, i) outputs 1 iff conditions 1), 2) and 3) are met.
Q: How will N calculate inputpos (i) and $\operatorname{prev}(i)$ in polytime?
Oblivious TMs follow a pattern in head movement that can be used to compute inputpos(i) and $\operatorname{prev}(i)$ in polytime.

Meyer's Theorem

Theorem: If EXP $\subseteq \mathrm{P}_{/ \text {poly }}$, then $\operatorname{EXP}=\Sigma_{2}^{p}$.
Proof: Putting L in Σ_{2}^{p} :
\exists a circuit C s.t. $\forall i \in\left[1, O\left(2^{n^{c}}\right)\right]$ the following are true:

$$
\begin{aligned}
& x \in L \quad \Longleftrightarrow \quad \text { 1) If } i=1 \text {, then } C(x, i) \text { is the starting snapshot of } M^{\prime} \text { 's run on } x . \\
& \text { 2) If } i=O\left(2^{n^{c}}\right) \text {, then } C(x, i) \text { is the accepting snapshot of } M \text { 's run on } x . \\
& \text { 3) If } i>1, C(x, i)=F\left(C(x, i-1), x_{\text {inputpos }(i)}, C(x, \operatorname{prev}(i))\right)
\end{aligned}
$$

Polytime TM N exists that on input (x, C, i) outputs 1 iff conditions 1), 2) and 3) are met.
Q: How will N calculate inputpos (i) and $\operatorname{prev}(i)$ in polytime?
Oblivious TMs follow a pattern in head movement that can be used to compute inputpos(i) and prev(i) in polytime.

Circuit Lower Bounds

Circuit Lower Bounds

Theorem: For every $n>1$, there exists a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that cannot be computed

Circuit Lower Bounds

Theorem: For every $n>1$, there exists a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that cannot be computed by a circuit C of size $2^{n} /(10 n)$.

Circuit Lower Bounds

Theorem: For every $n>1$, there exists a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that cannot be computed by a circuit C of size $2^{n} /(10 n)$.

Proof:

Circuit Lower Bounds

Theorem: For every $n>1$, there exists a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that cannot be computed by a circuit C of size $2^{n} /(10 n)$.

Proof: Counting argument:

Circuit Lower Bounds

Theorem: For every $n>1$, there exists a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that cannot be computed by a circuit C of size $2^{n} /(10 n)$.

Proof: Counting argument:

- The number of functions from $\{0,1\}^{n}$ to $\{0,1\}$:

Circuit Lower Bounds

Theorem: For every $n>1$, there exists a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that cannot be computed by a circuit C of size $2^{n} /(10 n)$.

Proof: Counting argument:

- The number of functions from $\{0,1\}^{n}$ to $\{0,1\}: 2^{2^{n}}$

Circuit Lower Bounds

Theorem: For every $n>1$, there exists a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that cannot be computed by a circuit C of size $2^{n} /(10 n)$.

Proof: Counting argument:

- The number of functions from $\{0,1\}^{n}$ to $\{0,1\}: 2^{2^{n}}$
- The number of bits required to encode a circuit of size S :

Circuit Lower Bounds

Theorem: For every $n>1$, there exists a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that cannot be computed by a circuit C of size $2^{n} /(10 n)$.

Proof: Counting argument:

- The number of functions from $\{0,1\}^{n}$ to $\{0,1\}: 2^{2^{n}}$
- The number of bits required to encode a circuit of size $S: S$

Circuit Lower Bounds

Theorem: For every $n>1$, there exists a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that cannot be computed by a circuit C of size $2^{n} /(10 n)$.

Proof: Counting argument:

- The number of functions from $\{0,1\}^{n}$ to $\{0,1\}: 2^{2^{n}}$
- The number of bits required to encode a circuit of size $S: S$

Circuit Lower Bounds

Theorem: For every $n>1$, there exists a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that cannot be computed by a circuit C of size $2^{n} /(10 n)$.

Proof: Counting argument:

- The number of functions from $\{0,1\}^{n}$ to $\{0,1\}: 2^{2^{n}}$
- The number of bits required to encode a circuit of size $S: S \times(2 \log S$

Circuit Lower Bounds

Theorem: For every $n>1$, there exists a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that cannot be computed by a circuit C of size $2^{n} /(10 n)$.

Proof: Counting argument:

> vertices giving edges

- The number of functions from $\{0,1\}^{n}$ to $\{0,1\}: 2^{2^{n}}$

- The number of bits required to encode a circuit of size $S: S \times(2 \log S$

Circuit Lower Bounds

Theorem: For every $n>1$, there exists a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that cannot be computed by a circuit C of size $2^{n} /(10 n)$.

Proof: Counting argument:

- The number of bits required to encode a circuit of size $S: S \times(2 \log S+\log S)$

Circuit Lower Bounds

Theorem: For every $n>1$, there exists a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that cannot be computed by a circuit C of size $2^{n} /(10 n)$.

Proof: Counting argument:

- The number of bits required to encode a circuit of size $S: S \times(2 \log S+\log S)$

labels: $x_{i}, \wedge, \vee, \neg$

Circuit Lower Bounds

Theorem: For every $n>1$, there exists a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that cannot be computed by a circuit C of size $2^{n} /(10 n)$.

Proof: Counting argument:

- The number of bits required to encode a circuit of size $S: S \times(2 \log S+\log S) \times 3$

labels: $x_{i}, \wedge, \vee, \neg$

Circuit Lower Bounds

Theorem: For every $n>1$, there exists a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that cannot be computed by a circuit C of size $2^{n} /(10 n)$.
Proof: Counting argument:

- The number of functions from $\{0,1\}^{n}$ to $\{0,1\}: 2^{2^{n}}$

- The number of bits required to encode a circuit of size $S: S \times(2 \log S+\log S) \times 3$

labels: $x_{i}, \wedge, \vee, \neg$

Circuit Lower Bounds

Theorem: For every $n>1$, there exists a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that cannot be computed by a circuit C of size $2^{n} /(10 n)$.
Proof: Counting argument:

- The number of functions from $\{0,1\}^{n}$ to $\{0,1\}: 2^{2^{n}}$
vertices giving edges
unique encoding
- The number of bits required to encode a circuit of size $S: S \times(2 \log S+\log S) \times 3$
- The number of circuits of size S is at most: $2^{9 S} \log S$ \# of vertices

Circuit Lower Bounds

Theorem: For every $n>1$, there exists a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that cannot be computed by a circuit C of size $2^{n} /(10 n)$.
Proof: Counting argument:

- The number of functions from $\{0,1\}^{n}$ to $\{0,1\}: 2^{2^{n}}$
vertices giving edges
unique encoding

- The number of bits required to encode a circuit of size $S: S \times(2 \log S+\log S) \times 3$
- The number of circuits of size S is at most: $2^{9 S} \log S$ \# of vertices

Set $S=2^{n} /(10 n)$.

Circuit Lower Bounds

Theorem: For every $n>1$, there exists a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that cannot be computed by a circuit C of size $2^{n} /(10 n)$.

Proof: Counting argument:

- The number of functions from $\{0,1\}^{n}$ to $\{0,1\}: 2^{2^{n}}$
vertices giving edges
unique encoding

- The number of bits required to encode a circuit of size $S: S \times(2 \log S+\log S) \times 3$
- The number of circuits of size S is at most: $2^{9 S} \log S$ \# of vertices

Set $S=2^{n} /(10 n)$. Then, the number of circuits of size S is at most:

Circuit Lower Bounds

Theorem: For every $n>1$, there exists a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that cannot be computed by a circuit C of size $2^{n} /(10 n)$.

Proof: Counting argument:

- The number of functions from $\{0,1\}^{n}$ to $\{0,1\}: 2^{2^{n}}$
vertices giving edges
unique encoding
- The number of bits required to encode a circuit of size $S: S \times(2 \log S+\log S) \times 3$
- The number of circuits of size S is at most: $2^{9 S} \log S$ \# of vertices

Set $S=2^{n} /(10 n)$. Then, the number of circuits of size S is at most:

$$
2^{9 S \log S}
$$

Circuit Lower Bounds

Theorem: For every $n>1$, there exists a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that cannot be computed by a circuit C of size $2^{n} /(10 n)$.

Proof: Counting argument:

- The number of functions from $\{0,1\}^{n}$ to $\{0,1\}: 2^{2^{n}}$
vertices giving edges
unique encoding
- The number of bits required to encode a circuit of size $S: S \times(2 \log S+\log S) \times 3$
- The number of circuits of size S is at most: $2^{9 S} \log S$ \# of vertices

Set $S=2^{n} /(10 n)$. Then, the number of circuits of size S is at most:

$$
2^{9 S \log S}<2^{9.2^{2 /(10 n) . n}}
$$

Circuit Lower Bounds

Theorem: For every $n>1$, there exists a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that cannot be computed by a circuit C of size $2^{n} /(10 n)$.

Proof: Counting argument:

- The number of functions from $\{0,1\}^{n}$ to $\{0,1\}: 2^{2^{n}}$
vertices giving edges
unique encoding
- The number of bits required to encode a circuit of size $S: S \times(2 \log S+\log S) \times 3$
- The number of circuits of size S is at most: $2^{9 S \log S}$ \# of vertices

Set $S=2^{n} /(10 n)$. Then, the number of circuits of size S is at most:

$$
2^{9 S \log S}<2^{9 \cdot 2^{n /(10 n) . n}}<2^{2^{n}}
$$

Circuit Lower Bounds

Theorem: For every $n>1$, there exists a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that cannot be computed by a circuit C of size $2^{n} /(10 n)$.

Proof: Counting argument:

- The number of functions from $\{0,1\}^{n}$ to $\{0,1\}: 2^{2^{n}}$
vertices giving edges

> unique
encoding

- The number of bits required to encode a circuit of size $S: S \times(2 \log S+\log S) \times 3$
- The number of circuits of size S is at most: $2^{9 S} \log S$ \# of vertices

Set $S=2^{n} /(10 n)$. Then, the number of circuits of size S is at most:

$$
2^{9 S \log S}<2^{9 \cdot 2^{n /(10 n) . n}}<2^{2^{n}}
$$

The number of functions exceeds the number of circuits.

Circuit Lower Bounds

Theorem: For every $n>1$, there exists a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that cannot be computed by a circuit C of size $2^{n} /(10 n)$.

Proof: Counting argument:
unique

- The number of functions from $\{0,1\}^{n}$ to $\{0,1\}: 2^{2^{n}}$
- The number of bits required to encode a circuit of size $S: S \times(2 \log S+\log S) \times 3$
- The number of circuits of size S is at most: $2^{9 S} \log S$

vertices giving edges

Set $S=2^{n} /(10 n)$. Then, the number of circuits of size S is at most:

$$
2^{9 S \log S}<2^{9 \cdot 2^{n /(10 n) . n}}<2^{2^{n}}
$$

The number of functions exceeds the number of circuits.
\therefore some functions from $\{0,1\}^{n}$ to 0,1 cannot be computed by circuits of size $2^{n} /(10 n)$

Circuit Lower Bounds

Theorem: For every $n>1$, there exists a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that cannot be computed by a circuit C of size $2^{n} /(10 n)$.

Proof: Counting argument:

- The number of functions from $\{0,1\}^{n}$ to $\{0,1\}: 2^{2^{n}}$
vertices giving edges
- The number of bits required to encode a circuit of size $S: S \times(2 \log S+\log S) \times 3$
- The number of circuits of size S is at most: $2^{9 S \log S}$

\# of vertices

Set $S=2^{n} /(10 n)$. Then, the number of circuits of size S is at most:

$$
2^{9 S \log S}<2^{9 \cdot 2^{n /(10 n) . n}}<2^{2^{n}}
$$

The number of functions exceeds the number of circuits.
\therefore some functions from $\{0,1\}^{n}$ to 0,1 cannot be computed by circuits of size $2^{n} /(10 n)$

