Lecture 30

Meyer's Theorem, Circuit Lower Bound

Theorem: If **EXP** \subseteq **P**/poly, then **EXP** = Σ_2^p .

Theorem: If **EXP** \subseteq **P**/poly, then **EXP** = Σ_2^p .

Proof:

Theorem: If **EXP** \subseteq **P**/**poly**, then **EXP** = Σ_2^p .

Proof: Let $L \in EXP$ and M be an oblivious TM that decides L in $O(2^{n^c})$ time.

Theorem: If **EXP** \subseteq **P**_{/poly}, then **EXP** $= \Sigma_2^p$.

Proof: Let $L \in EXP$ and M be an oblivious TM that decides L in $O(2^{n^c})$ time.

 $x \in L \iff \exists$ a sequence of snapshots $T_1, T_2, \dots, T_{O(2^{n^c})}$ such that \dots

Theorem: If **EXP** \subseteq **P**_{/poly}, then **EXP** $= \Sigma_2^p$.

Proof: Let $L \in EXP$ and M be an oblivious TM that decides L in $O(2^{n^c})$ time.

 $x \in L \iff \exists$ a sequence of snapshots $T_1, T_2, \dots, T_{O(2^{n^c})}$ such that \dots

Define a related language L'

Theorem: If **EXP** \subseteq **P**_{/poly}, then **EXP** $= \Sigma_2^p$.

Proof: Let $L \in \text{EXP}$ and M be an oblivious TM that decides L in $O(2^{n^c})$ time.

Define a related language L'

 $x \in L \iff \exists$ a sequence of snapshots $T_1, T_2, \dots, T_{O(2^{n^c})}$ such that \dots

Theorem: If **EXP** \subseteq **P**_{/poly}, then **EXP** $= \Sigma_2^p$.

Proof: Let $L \in \text{EXP}$ and M be an oblivious TM that decides L in $O(2^{n^c})$ time.

Define a related language L'

Now,

 $x \in L \iff \exists$ a sequence of snapshots $T_1, T_2, \dots, T_{O(2^{n^c})}$ such that \dots

Theorem: If **EXP** \subseteq **P**_{/poly}, then **EXP** $= \Sigma_2^p$.

Proof: Let $L \in \text{EXP}$ and M be an oblivious TM that decides L in $O(2^{n^c})$ time.

Define a related language L'

Now,

 $L \in \mathsf{EXP}$

 $x \in L \iff \exists$ a sequence of snapshots $T_1, T_2, \dots, T_{O(2^{n^c})}$ such that \dots

Theorem: If **EXP** \subseteq **P**_{/poly}, then **EXP** $= \Sigma_2^p$.

Proof: Let $L \in \text{EXP}$ and M be an oblivious TM that decides L in $O(2^{n^c})$ time.

 $x \in L \iff \exists$ a sequence of snapshots $T_1, T_2, \dots, T_{O(2^{n^c})}$ such that \dots

Define a related language L'

Now,

$L \in \mathsf{EXP} \implies L' \in \mathsf{EXP}$

Theorem: If **EXP** \subseteq **P**_{/poly}, then **EXP** $= \Sigma_2^p$.

Proof: Let $L \in EXP$ and M be an oblivious TM that decides L in $O(2^{n^c})$ time.

Define a related language L'

Now,

$L \in \mathsf{EXP} \implies L' \in \mathsf{EXP} \implies L' \in \mathsf{P}_{\mathsf{poly}}$

- $x \in L \iff \exists$ a sequence of snapshots $T_1, T_2, \dots, T_{O(2^{n^c})}$ such that \dots

Theorem: If **EXP** \subseteq **P**_{/poly}, then **EXP** $= \Sigma_2^p$.

Proof: Let $L \in EXP$ and M be an oblivious TM that decides L in $O(2^{n^c})$ time.

Define a related language L'

Now,

$L \in \mathsf{EXP} \implies L' \in \mathsf{EXP} \implies L' \in \mathsf{P}_{\mathsf{/poly}} \implies$

- $x \in L \iff \exists$ a sequence of snapshots $T_1, T_2, \dots, T_{O(2^{n^c})}$ such that \dots

Theorem: If EXP \subseteq P_{/poly}, then EXP $= \Sigma_2^p$.

Proof: Let $L \in \mathsf{EXP}$ and M be an oblivious TM that decides L in $O(2^{n^c})$ time.

Define a related language L'

Now,

$L \in \mathsf{EXP} \implies L' \in \mathsf{EXP} \implies L' \in \mathsf{P}_{\mathsf{/poly}} \implies$

- $x \in L \iff \exists$ a sequence of snapshots $T_1, T_2, \dots, T_{O(2^{n^c})}$ such that \dots

 $L' = \{(x, i, j) \mid j \text{ th bit of the } i \text{ th snapshot is } 1 \text{ when } M \text{ runs on } x\}$

Example 3 a polysize circuit family C that on input (x, i, j) outputs the *j*th bit of *i*th snapshot of *M*'s run on *x*.

Theorem: If **EXP** \subseteq **P**_{/poly}, then **EXP** $= \Sigma_2^p$.

Proof: Let $L \in EXP$ and M be an oblivious TM that decides L in $O(2^{n^c})$ time.

Define a related language L'

Now,

$L \in \mathsf{EXP} \implies L' \in \mathsf{EXP} \implies L' \in \mathsf{P}_{\mathsf{/poly}} \implies$

- $x \in L \iff \exists$ a sequence of snapshots $T_1, T_2, \dots, T_{O(2^{n^c})}$ such that \dots

Theorem: If EXP \subseteq P_{/poly}, then EXP $= \Sigma_2^p$.

Proof: Let $L \in \mathsf{EXP}$ and M be an oblivious TM that decides L in $O(2^{n^c})$ time.

Define a related language L'

Now,

$L \in \mathsf{EXP} \implies L' \in \mathsf{EXP} \implies L' \in \mathsf{P}_{\mathsf{/poly}} \implies$

- $x \in L \iff \exists$ a sequence of snapshots $T_1, T_2, \dots, T_{O(2^{n^c})}$ such that \dots

 $L' = \{(x, i, j) \mid j \text{ th bit of the } i \text{ th snapshot is } 1 \text{ when } M \text{ runs on } x\}$

Example 3 a polysize circuit family *D* that on input (x, i) outputs the *i*th snapshot of M's run on x.

Theorem: If **EXP** \subseteq **P**/poly, then **EXP** = Σ_2^p .

Proof:

Theorem: If **EXP** \subseteq **P**/**poly**, then **EXP** = Σ_2^p .

Proof: Putting L in Σ_2^p :

Theorem: If **EXP** \subseteq **P**/poly, then **EXP** = Σ_2^p .

Proof: Putting L in Σ_2^p :

 $x \in L$

Theorem: If **EXP** \subseteq **P**/poly, then **EXP** = Σ_2^p .

Proof: Putting L in Σ_2^p :

Theorem: If **EXP** \subseteq **P**/poly, then **EXP** = Σ_2^p .

Proof: Putting L in Σ_2^p :

 \exists a circuit C

Theorem: If **EXP** \subseteq **P**/poly, then **EXP** = Σ_2^p .

Proof: Putting L in Σ_2^p :

 \exists a circuit C s.t. $\forall i \in [1, O(2^{n^c})]$

Theorem: If **EXP** \subseteq **P**/poly, then **EXP** = Σ_2^p .

Proof: Putting L in Σ_2^p :

 \exists a circuit C s.t. $\forall i \in [1, O(2^{n^c})]$ the following are true:

Theorem: If $EXP \subseteq P_{\text{poly}}$, then $EXP = \Sigma_2^p$. **Proof:** Putting L in Σ_2^p :

> \exists a circuit C s.t. $\forall i \in [1, O(2^{n^c})]$ the following are true: $x \in L \iff 1$) If i = 1, then C(x, i) is the starting snapshot of M's run on x.

Theorem: If $EXP \subseteq P_{\text{poly}}$, then $EXP = \Sigma_2^p$. **Proof:** Putting *L* in Σ_2^p :

> \exists a circuit C s.t. $\forall i \in [1, O(2^{n^c})]$ the following are true: $x \in L \iff 1$) If i = 1, then C(x, i) is the starting snapshot of M's run on x. 2) If $i = O(2^{n^c})$, then C(x, i) is the accepting snapshot of M's run on x.

Theorem: If $EXP \subseteq P_{\text{poly}}$, then $EXP = \Sigma_2^p$. **Proof:** Putting *L* in Σ_2^p :

Theorem: If **EXP** \subseteq **P**_{/poly}, then **EXP** $= \Sigma_2^p$. **Proof:** Putting L in Σ_2^p :

Polytime TM N exists that on input (x, C, i)

Theorem: If **EXP** \subseteq **P**_{/poly}, then **EXP** $= \Sigma_2^p$. **Proof:** Putting L in Σ_2^p :

Polytime TM N exists that on input (x, C, i) outputs 1 iff

Theorem: If EXP \subseteq P_{/poly}, then EXP $= \Sigma_2^p$. **Proof:** Putting L in Σ_2^p :

Polytime TM N exists that on input (x, C, i) outputs 1 iff conditions 1), 2) and 3) are met.

Theorem: If $EXP \subseteq P_{\text{poly}}$, then $EXP = \Sigma_2^p$. **Proof:** Putting L in Σ_2^p :

Q: How will N calculate inputpos(i) and prev(i) in polytime?

 \exists a circuit C s.t. $\forall i \in [1, O(2^{n^c})]$ the following are true: $x \in L \iff 1$) If i = 1, then C(x, i) is the starting snapshot of M's run on x. 2) If $i = O(2^{n^c})$, then C(x, i) is the accepting snapshot of M's run on x. 3) If i > 1, $C(x, i) = F(C(x, i - 1), x_{inputpos(i)}, C(x, prev(i)))$

Polytime TM N exists that on input (x, C, i) outputs 1 iff conditions 1), 2) and 3) are met.

Theorem: If EXP \subseteq P_{/poly}, then EXP $= \Sigma_2^p$. **Proof:** Putting *L* in Σ_2^p :

- **Q:** How will N calculate inputpos(i) and prev(i) in polytime?

 \exists a circuit C s.t. $\forall i \in [1, O(2^{n^c})]$ the following are true: $x \in L \iff 1$) If i = 1, then C(x, i) is the starting snapshot of M's run on x. 2) If $i = O(2^{n^c})$, then C(x, i) is the accepting snapshot of M's run on x. 3) If i > 1, $C(x, i) = F(C(x, i - 1), x_{inputpos(i)}, C(x, prev(i)))$

Polytime TM N exists that on input (x, C, i) outputs 1 iff conditions 1), 2) and 3) are met.

Oblivious TMs follow a pattern in head movement that can be used to compute

Theorem: If EXP \subseteq P_{/poly}, then EXP $= \Sigma_2^p$. **Proof:** Putting *L* in Σ_2^p :

- **Q:** How will N calculate inputpos(i) and prev(i) in polytime? inputpos(i) and prev(i) in polytime.

 \exists a circuit C s.t. $\forall i \in [1, O(2^{n^c})]$ the following are true: $x \in L \iff 1$) If i = 1, then C(x, i) is the starting snapshot of M's run on x. 2) If $i = O(2^{n^c})$, then C(x, i) is the accepting snapshot of M's run on x. 3) If i > 1, $C(x, i) = F(C(x, i - 1), x_{inputpos(i)}, C(x, prev(i)))$

Polytime TM N exists that on input (x, C, i) outputs 1 iff conditions 1), 2) and 3) are met.

Oblivious TMs follow a pattern in head movement that can be used to compute

Theorem: If EXP \subseteq P_{/poly}, then EXP $= \Sigma_2^p$. **Proof:** Putting *L* in Σ_2^p :

- **Q:** How will N calculate inputpos(i) and prev(i) in polytime? inputpos(i) and prev(i) in polytime.

 \exists a circuit C s.t. $\forall i \in [1, O(2^{n^c})]$ the following are true: $x \in L \iff 1$) If i = 1, then C(x, i) is the starting snapshot of M's run on x. 2) If $i = O(2^{n^c})$, then C(x, i) is the accepting snapshot of M's run on x. 3) If i > 1, $C(x, i) = F(C(x, i - 1), x_{inputpos(i)}, C(x, prev(i)))$

Polytime TM N exists that on input (x, C, i) outputs 1 iff conditions 1), 2) and 3) are met.

Oblivious TMs follow a pattern in head movement that can be used to compute

Theorem: For every n > 1, there exists a function $f: \{0,1\}^n \rightarrow \{0,1\}$ that cannot be computed

Theorem: For every n > 1, there exists a function $f: \{0,1\}^n \rightarrow \{0,1\}$ that cannot be computed by a circuit C of size $2^n/(10n)$.

Theorem: For every n > 1, there exists a function $f: \{0,1\}^n \rightarrow \{0,1\}$ that cannot be computed by a circuit C of size $2^n/(10n)$.

Proof:

Theorem: For every n > 1, there exists a function $f: \{0,1\}^n \rightarrow \{0,1\}$ that cannot be computed

by a circuit C of size $2^n/(10n)$.

Proof: Counting argument:

Theorem: For every n > 1, there exists a function $f: \{0,1\}^n \rightarrow \{0,1\}$ that cannot be computed

by a circuit C of size $2^n/(10n)$.

Proof: Counting argument:

• The number of functions from $\{0,1\}^n$ to $\{0,1\}$:

Theorem: For every n > 1, there exists a function $f: \{0,1\}^n \rightarrow \{0,1\}$ that cannot be computed

by a circuit C of size $2^n/(10n)$.

Proof: Counting argument:

• The number of functions from $\{0,1\}^n$ to $\{0,1\}$: 2^{2^n}

- by a circuit C of size $2^n/(10n)$.
- **Proof:** Counting argument:
 - The number of functions from $\{0,1\}^n$ to $\{0,1\}$: 2^{2^n}
 - The number of bits required to encode a circuit of size S:

Theorem: For every n > 1, there exists a function $f: \{0,1\}^n \rightarrow \{0,1\}$ that cannot be computed

- by a circuit C of size $2^n/(10n)$.
- **Proof:** Counting argument:
 - The number of functions from $\{0,1\}^n$ to $\{0,1\}$: 2^{2^n}
 - The number of bits required to encode a circuit of size S: S

Theorem: For every n > 1, there exists a function $f: \{0,1\}^n \rightarrow \{0,1\}$ that cannot be computed

- by a circuit C of size $2^n/(10n)$.
- **Proof:** Counting argument:
 - The number of functions from $\{0,1\}^n$ to $\{0,1\}$: 2^{2^n}
 - The number of bits required to encode a circuit of size S: S

Theorem: For every n > 1, there exists a function $f: \{0,1\}^n \rightarrow \{0,1\}$ that cannot be computed

of vertices

- by a circuit C of size $2^n/(10n)$.
- **Proof:** Counting argument:
 - The number of functions from $\{0,1\}^n$ to $\{0,1\}$: 2^{2^n}
 - The number of bits required to encode a circuit of size S: $S \times (2 \log S)$

Theorem: For every n > 1, there exists a function $f: \{0,1\}^n \rightarrow \{0,1\}$ that cannot be computed

of vertices

- by a circuit C of size $2^n/(10n)$.
- **Proof:** Counting argument:
 - The number of functions from $\{0,1\}^n$ to $\{0,1\}$: 2^{2^n}
 - The number of bits required to encode a circuit of size $S: S \times (2 \log S)$

Theorem: For every n > 1, there exists a function $f: \{0,1\}^n \rightarrow \{0,1\}$ that cannot be computed

vertices giving edges # of vertices

- by a circuit C of size $2^n/(10n)$.
- **Proof:** Counting argument:
 - The number of functions from $\{0,1\}^n$ to $\{0,1\}$: 2^{2^n}

Theorem: For every n > 1, there exists a function $f: \{0,1\}^n \rightarrow \{0,1\}$ that cannot be computed

vertices giving edges • The number of bits required to encode a circuit of size $S: S \times (2 \log S + \log S)$ # of vertices

- by a circuit C of size $2^n/(10n)$.
- **Proof:** Counting argument:
 - The number of functions from $\{0,1\}^n$ to $\{0,1\}$: 2^{2^n}

Theorem: For every n > 1, there exists a function $f: \{0,1\}^n \rightarrow \{0,1\}$ that cannot be computed

- by a circuit C of size $2^n/(10n)$.
- **Proof:** Counting argument:
 - The number of functions from $\{0,1\}^n$ to $\{0,1\}$: 2^{2^n}

Theorem: For every n > 1, there exists a function $f: \{0,1\}^n \rightarrow \{0,1\}$ that cannot be computed

- by a circuit C of size $2^n/(10n)$.
- **Proof:** Counting argument:
 - The number of functions from $\{0,1\}^n$ to $\{0,1\}$: 2^{2^n}

Theorem: For every n > 1, there exists a function $f: \{0,1\}^n \rightarrow \{0,1\}$ that cannot be computed

by a circuit C of size $2^n/(10n)$.

Proof: Counting argument:

- The number of functions from $\{0,1\}^n$ to $\{0,1\}$: 2^{2^n}
- The number of circuits of size S is at most: $2^{9S \log S}$

Theorem: For every n > 1, there exists a function $f: \{0,1\}^n \rightarrow \{0,1\}$ that cannot be computed by a circuit C of size $2^n/(10n)$.

Proof: Counting argument:

- The number of functions from $\{0,1\}^n$ to $\{0,1\}$: 2^{2^n}
- The number of circuits of size S is at most: $2^{9S \log S}$

Set $S = 2^n / (10n)$.

Theorem: For every n > 1, there exists a function $f: \{0,1\}^n \rightarrow \{0,1\}$ that cannot be computed by a circuit C of size $2^n/(10n)$.

Proof: Counting argument:

- The number of functions from $\{0,1\}$
- The number of bits required to end
- The number of circuits of size S is a

Set $S = 2^n/(10n)$. Then, the number of circuits of size S is at most:

vertices giving edges

$$x^n$$
 to $\{0,1\}$: 2^{2^n}
code a circuit of size S : $S \times (2 \log S + \log S) \times 3^n$
at most: $2^{9S \log S}$
of vertices

Theorem: For every n > 1, there exists a function $f: \{0,1\}^n \rightarrow \{0,1\}$ that cannot be computed by a circuit C of size $2^n/(10n)$.

Proof: Counting argument:

- The number of functions from $\{0,1\}$
- The number of bits required to end
- The number of circuits of size S is a

Set $S = 2^n/(10n)$. Then, the number of circuits of size S is at most: **795 log 5**

vertices giving edges

$$x^n$$
 to $\{0,1\}$: 2^{2^n}
code a circuit of size S : $S \times (2 \log S + \log S) \times 3^n$
at most: $2^{9S \log S}$
of vertices

Theorem: For every n > 1, there exists a function $f: \{0,1\}^n \rightarrow \{0,1\}$ that cannot be computed by a circuit C of size $2^n/(10n)$.

Proof: Counting argument:

- The number of functions from $\{0,1\}$
- The number of bits required to end
- The number of circuits of size S is a

Set $S = 2^n/(10n)$. Then, the number of circuits of size S is at most: $2^{9S \log S} < 2^{9.2^n/(10n).n}$

vertices giving edges encodes

$$n^{n}$$
 to $\{0,1\}: 2^{2^{n}}$
code a circuit of size $S: S \times (2 \log S + \log S) \times 3^{n}$
at most: $2^{9S \log S}$
of vertices
 p^{n} to $\{0,1\}: 2^{2^{n}}$
 p^{n} to $\{0,1\}: 2^{2^{n}}$

Theorem: For every n > 1, there exists a function $f: \{0,1\}^n \rightarrow \{0,1\}$ that cannot be computed by a circuit C of size $2^n/(10n)$.

Proof: Counting argument:

- The number of functions from $\{0,1\}$
- The number of bits required to end
- The number of circuits of size S is a

Set $S = 2^n/(10n)$. Then, the number of circuits of size S is at most:

vertices giving edges encodes

$$a^{n}$$
 to $\{0,1\}: 2^{2^{n}}$
code a circuit of size $S: S \times (2 \log S + \log S) \times 3$
at most: $2^{9S \log S}$
of vertices
 $a^{k} \circ f$ vertices

Theorem: For every n > 1, there exists a function $f: \{0,1\}^n \rightarrow \{0,1\}$ that cannot be computed by a circuit C of size $2^n/(10n)$.

Proof: Counting argument:

- The number of functions from $\{0,1\}$
- The number of bits required to end
- The number of circuits of size S is a

Set $S = 2^n/(10n)$. Then, the number of circuits of size S is at most:

The number of functions exceeds the number of circuits.

vertices giving edges encodes

$$a^{n}$$
 to $\{0,1\}: 2^{2^{n}}$
code a circuit of size $S: S \times (2 \log S + \log S) \times 3$
at most: $2^{9S \log S}$
of vertices
 $a^{k} \circ f$ vertices

Theorem: For every n > 1, there exists a function $f: \{0,1\}^n \rightarrow \{0,1\}$ that cannot be computed by a circuit C of size $2^n/(10n)$.

Proof: Counting argument:

- The number of functions from $\{0,1\}$
- The number of bits required to end
- The number of circuits of size S is a

Set $S = 2^n/(10n)$. Then, the number of circuits of size S is at most:

The number of functions exceeds the number of circuits.

 \therefore some functions from $\{0,1\}^n$ to 0,1 cannot be computed by circuits of size $2^n/(10n)$

vertices giving edges encodes

$$a^{n}$$
 to $\{0,1\}: 2^{2^{n}}$
code a circuit of size $S: S \times (2 \log S + \log S) \times 3$
at most: $2^{9S \log S}$
of vertices
 $a^{k} \circ f$ vertices

Theorem: For every n > 1, there exists a function $f: \{0,1\}^n \rightarrow \{0,1\}$ that cannot be computed by a circuit C of size $2^n/(10n)$.

Proof: Counting argument:

- The number of functions from $\{0,1\}$
- The number of bits required to end
- The number of circuits of size S is a

Set $S = 2^n/(10n)$. Then, the number of circuits of size S is at most:

The number of functions exceeds the number of circuits.

 \therefore some functions from $\{0,1\}^n$ to 0,1 cannot be computed by circuits of size $2^n/(10n)$

vertices giving edges encodes

$$a^{n}$$
 to $\{0,1\}: 2^{2^{n}}$
code a circuit of size $S: S \times (2 \log S + \log S) \times 3$
at most: $2^{9S \log S}$
of vertices
 $a^{k} \circ f$ vertices

