
Lecture 30

Meyer’s Theorem, Circuit Lower Bound

Meyer’s Theorem

Meyer’s Theorem
Theorem: If EXP , then EXP .⊆ P/poly = Σp

2

Meyer’s Theorem
Theorem: If EXP , then EXP .⊆ P/poly = Σp

2

Proof:

Meyer’s Theorem
Theorem: If EXP , then EXP .⊆ P/poly = Σp

2

Let EXP and be an oblivious TM that decides in time.L ∈ M L O(2nc)Proof:

Meyer’s Theorem
Theorem: If EXP , then EXP .⊆ P/poly = Σp

2

Let EXP and be an oblivious TM that decides in time.L ∈ M L O(2nc)

 a sequence of snapshots such that …… x ∈ L ⟺ ∃ T1, T2, …, TO(2nc)

Proof:

Meyer’s Theorem
Theorem: If EXP , then EXP .⊆ P/poly = Σp

2

Let EXP and be an oblivious TM that decides in time.L ∈ M L O(2nc)

Define a related language L′

 a sequence of snapshots such that …… x ∈ L ⟺ ∃ T1, T2, …, TO(2nc)

Proof:

Meyer’s Theorem
Theorem: If EXP , then EXP .⊆ P/poly = Σp

2

Let EXP and be an oblivious TM that decides in time.L ∈ M L O(2nc)

Define a related language L′

 a sequence of snapshots such that …… x ∈ L ⟺ ∃ T1, T2, …, TO(2nc)

Proof:

th bit of the th snapshot is when runs on L′ = {(x, i, j) ∣ j i 1 M x}

Meyer’s Theorem
Theorem: If EXP , then EXP .⊆ P/poly = Σp

2

Let EXP and be an oblivious TM that decides in time.L ∈ M L O(2nc)

Define a related language L′

 a sequence of snapshots such that …… x ∈ L ⟺ ∃ T1, T2, …, TO(2nc)

Proof:

th bit of the th snapshot is when runs on L′ = {(x, i, j) ∣ j i 1 M x}

Now,

Meyer’s Theorem
Theorem: If EXP , then EXP .⊆ P/poly = Σp

2

Let EXP and be an oblivious TM that decides in time.L ∈ M L O(2nc)

Define a related language L′

 a sequence of snapshots such that …… x ∈ L ⟺ ∃ T1, T2, …, TO(2nc)

EXPL ∈

Proof:

th bit of the th snapshot is when runs on L′ = {(x, i, j) ∣ j i 1 M x}

Now,

Meyer’s Theorem
Theorem: If EXP , then EXP .⊆ P/poly = Σp

2

Let EXP and be an oblivious TM that decides in time.L ∈ M L O(2nc)

Define a related language L′

 a sequence of snapshots such that …… x ∈ L ⟺ ∃ T1, T2, …, TO(2nc)

EXPL ∈

Proof:

th bit of the th snapshot is when runs on L′ = {(x, i, j) ∣ j i 1 M x}

Now,

 EXP⟹ L′ ∈

Meyer’s Theorem
Theorem: If EXP , then EXP .⊆ P/poly = Σp

2

Let EXP and be an oblivious TM that decides in time.L ∈ M L O(2nc)

Define a related language L′

 a sequence of snapshots such that …… x ∈ L ⟺ ∃ T1, T2, …, TO(2nc)

EXPL ∈ ⟹ L′ ∈ P/poly

Proof:

th bit of the th snapshot is when runs on L′ = {(x, i, j) ∣ j i 1 M x}

Now,

 EXP⟹ L′ ∈

Meyer’s Theorem
Theorem: If EXP , then EXP .⊆ P/poly = Σp

2

Let EXP and be an oblivious TM that decides in time.L ∈ M L O(2nc)

Define a related language L′

 a sequence of snapshots such that …… x ∈ L ⟺ ∃ T1, T2, …, TO(2nc)

EXPL ∈ ⟹ L′ ∈ P/poly

Proof:

th bit of the th snapshot is when runs on L′ = {(x, i, j) ∣ j i 1 M x}

Now,

 EXP⟹ L′ ∈ ⟹

Meyer’s Theorem
Theorem: If EXP , then EXP .⊆ P/poly = Σp

2

Let EXP and be an oblivious TM that decides in time.L ∈ M L O(2nc)

Define a related language L′

 a sequence of snapshots such that …… x ∈ L ⟺ ∃ T1, T2, …, TO(2nc)

EXPL ∈ ⟹ L′ ∈ P/poly

 a polysize circuit family that

on input outputs the

th bit of th snapshot of ’s run on .

∃ C
(x, i, j)

j i M x

Proof:

th bit of the th snapshot is when runs on L′ = {(x, i, j) ∣ j i 1 M x}

Now,

 EXP⟹ L′ ∈ ⟹

Meyer’s Theorem
Theorem: If EXP , then EXP .⊆ P/poly = Σp

2

Let EXP and be an oblivious TM that decides in time.L ∈ M L O(2nc)

Define a related language L′

 a sequence of snapshots such that …… x ∈ L ⟺ ∃ T1, T2, …, TO(2nc)

EXPL ∈ ⟹ L′ ∈ P/poly

Proof:

th bit of the th snapshot is when runs on L′ = {(x, i, j) ∣ j i 1 M x}

Now,

 EXP⟹ L′ ∈ ⟹

Meyer’s Theorem
Theorem: If EXP , then EXP .⊆ P/poly = Σp

2

Let EXP and be an oblivious TM that decides in time.L ∈ M L O(2nc)

Define a related language L′

 a sequence of snapshots such that …… x ∈ L ⟺ ∃ T1, T2, …, TO(2nc)

EXPL ∈ ⟹ L′ ∈ P/poly

Proof:

th bit of the th snapshot is when runs on L′ = {(x, i, j) ∣ j i 1 M x}

Now,

 EXP⟹ L′ ∈ ⟹
 a polysize circuit family that

on input outputs the

th snapshot of ’s run on .

∃ D
(x, i)

i M x

Meyer’s Theorem
Theorem: If EXP , then EXP .⊆ P/poly = Σp

2

Proof:

Meyer’s Theorem
Theorem: If EXP , then EXP .⊆ P/poly = Σp

2

Putting in :L Σp
2

Proof:

Meyer’s Theorem
Theorem: If EXP , then EXP .⊆ P/poly = Σp

2

x ∈ L

Putting in :L Σp
2

Proof:

Meyer’s Theorem
Theorem: If EXP , then EXP .⊆ P/poly = Σp

2

x ∈ L ⟺

Putting in :L Σp
2

Proof:

Meyer’s Theorem
Theorem: If EXP , then EXP .⊆ P/poly = Σp

2

x ∈ L ⟺

 a circuit ∃ C

Putting in :L Σp
2

Proof:

Meyer’s Theorem
Theorem: If EXP , then EXP .⊆ P/poly = Σp

2

x ∈ L ⟺

 a circuit ∃ C

Putting in :L Σp
2

s.t. ∀i ∈ [1,O(2nc)]

Proof:

Meyer’s Theorem
Theorem: If EXP , then EXP .⊆ P/poly = Σp

2

x ∈ L ⟺

 a circuit ∃ C

Putting in :L Σp
2

s.t. ∀i ∈ [1,O(2nc)] the following are true:

Proof:

Meyer’s Theorem
Theorem: If EXP , then EXP .⊆ P/poly = Σp

2

x ∈ L ⟺

 a circuit ∃ C

Putting in :L Σp
2

s.t. ∀i ∈ [1,O(2nc)]
 If , then is the starting snapshot of ’s run on .1) i = 1 C(x, i) M x

 the following are true:

Proof:

Meyer’s Theorem
Theorem: If EXP , then EXP .⊆ P/poly = Σp

2

x ∈ L ⟺

 a circuit ∃ C

Putting in :L Σp
2

s.t. ∀i ∈ [1,O(2nc)]
 If , then is the starting snapshot of ’s run on .1) i = 1 C(x, i) M x
 If , then is the accepting snapshot of ’s run on .2) i = O(2nc) C(x, i) M x

 the following are true:

Proof:

Meyer’s Theorem
Theorem: If EXP , then EXP .⊆ P/poly = Σp

2

x ∈ L ⟺

 a circuit ∃ C

Putting in :L Σp
2

s.t. ∀i ∈ [1,O(2nc)]
 If , then is the starting snapshot of ’s run on .1) i = 1 C(x, i) M x
 If , then is the accepting snapshot of ’s run on .2) i = O(2nc) C(x, i) M x
 If , 3) i > 1 C(x, i) = F(C(x, i − 1), xinputpos(i), C(x, prev(i)))

 the following are true:

Proof:

Meyer’s Theorem
Theorem: If EXP , then EXP .⊆ P/poly = Σp

2

x ∈ L ⟺

 a circuit ∃ C

Putting in :L Σp
2

s.t. ∀i ∈ [1,O(2nc)]
 If , then is the starting snapshot of ’s run on .1) i = 1 C(x, i) M x
 If , then is the accepting snapshot of ’s run on .2) i = O(2nc) C(x, i) M x
 If , 3) i > 1 C(x, i) = F(C(x, i − 1), xinputpos(i), C(x, prev(i)))

 the following are true:

Proof:

Polytime TM exists that on input N (x, C, i)

Meyer’s Theorem
Theorem: If EXP , then EXP .⊆ P/poly = Σp

2

x ∈ L ⟺

 a circuit ∃ C

Putting in :L Σp
2

s.t. ∀i ∈ [1,O(2nc)]
 If , then is the starting snapshot of ’s run on .1) i = 1 C(x, i) M x
 If , then is the accepting snapshot of ’s run on .2) i = O(2nc) C(x, i) M x
 If , 3) i > 1 C(x, i) = F(C(x, i − 1), xinputpos(i), C(x, prev(i)))

 the following are true:

Proof:

Polytime TM exists that on input N (x, C, i) outputs iff1

Meyer’s Theorem
Theorem: If EXP , then EXP .⊆ P/poly = Σp

2

x ∈ L ⟺

 a circuit ∃ C

Putting in :L Σp
2

s.t. ∀i ∈ [1,O(2nc)]
 If , then is the starting snapshot of ’s run on .1) i = 1 C(x, i) M x
 If , then is the accepting snapshot of ’s run on .2) i = O(2nc) C(x, i) M x
 If , 3) i > 1 C(x, i) = F(C(x, i − 1), xinputpos(i), C(x, prev(i)))

 the following are true:

Proof:

Polytime TM exists that on input N (x, C, i) outputs iff1 conditions , and are met.1) 2) 3)

Meyer’s Theorem
Theorem: If EXP , then EXP .⊆ P/poly = Σp

2

x ∈ L ⟺

 a circuit ∃ C

Putting in :L Σp
2

s.t. ∀i ∈ [1,O(2nc)]
 If , then is the starting snapshot of ’s run on .1) i = 1 C(x, i) M x
 If , then is the accepting snapshot of ’s run on .2) i = O(2nc) C(x, i) M x
 If , 3) i > 1 C(x, i) = F(C(x, i − 1), xinputpos(i), C(x, prev(i)))

 the following are true:

Proof:

Polytime TM exists that on input N (x, C, i) outputs iff1 conditions , and are met.1) 2) 3)

Q: How will calculate and in polytime?N inputpos(i) prev(i)

Meyer’s Theorem
Theorem: If EXP , then EXP .⊆ P/poly = Σp

2

x ∈ L ⟺

 a circuit ∃ C

Putting in :L Σp
2

s.t. ∀i ∈ [1,O(2nc)]
 If , then is the starting snapshot of ’s run on .1) i = 1 C(x, i) M x
 If , then is the accepting snapshot of ’s run on .2) i = O(2nc) C(x, i) M x
 If , 3) i > 1 C(x, i) = F(C(x, i − 1), xinputpos(i), C(x, prev(i)))

 the following are true:

Proof:

Polytime TM exists that on input N (x, C, i) outputs iff1 conditions , and are met.1) 2) 3)

Q: How will calculate and in polytime?N inputpos(i) prev(i)
Oblivious TMs follow a pattern in head movement that can be used to compute

Meyer’s Theorem
Theorem: If EXP , then EXP .⊆ P/poly = Σp

2

x ∈ L ⟺

 a circuit ∃ C

Putting in :L Σp
2

s.t. ∀i ∈ [1,O(2nc)]
 If , then is the starting snapshot of ’s run on .1) i = 1 C(x, i) M x
 If , then is the accepting snapshot of ’s run on .2) i = O(2nc) C(x, i) M x
 If , 3) i > 1 C(x, i) = F(C(x, i − 1), xinputpos(i), C(x, prev(i)))

 the following are true:

Proof:

Polytime TM exists that on input N (x, C, i) outputs iff1 conditions , and are met.1) 2) 3)

Q: How will calculate and in polytime?N inputpos(i) prev(i)
Oblivious TMs follow a pattern in head movement that can be used to compute

 and in polytime.inputpos(i) prev(i)

Meyer’s Theorem
Theorem: If EXP , then EXP .⊆ P/poly = Σp

2

x ∈ L ⟺

 a circuit ∃ C

Putting in :L Σp
2

s.t. ∀i ∈ [1,O(2nc)]
 If , then is the starting snapshot of ’s run on .1) i = 1 C(x, i) M x
 If , then is the accepting snapshot of ’s run on .2) i = O(2nc) C(x, i) M x
 If , 3) i > 1 C(x, i) = F(C(x, i − 1), xinputpos(i), C(x, prev(i)))

 the following are true:

Proof:

Polytime TM exists that on input N (x, C, i) outputs iff1 conditions , and are met.1) 2) 3)

Q: How will calculate and in polytime?N inputpos(i) prev(i)
Oblivious TMs follow a pattern in head movement that can be used to compute

 and in polytime.inputpos(i) prev(i)

Circuit Lower Bounds

Circuit Lower Bounds
Theorem: For every , there exists a function : that cannot be computed n > 1 f {0,1}n → {0,1}

Circuit Lower Bounds
Theorem: For every , there exists a function : that cannot be computed n > 1 f {0,1}n → {0,1}
by a circuit of size .C 2n/(10n)

Circuit Lower Bounds
Theorem: For every , there exists a function : that cannot be computed n > 1 f {0,1}n → {0,1}
by a circuit of size .C 2n/(10n)

Proof:

Circuit Lower Bounds
Theorem: For every , there exists a function : that cannot be computed n > 1 f {0,1}n → {0,1}
by a circuit of size .C 2n/(10n)

Counting argument:Proof:

Circuit Lower Bounds
Theorem: For every , there exists a function : that cannot be computed n > 1 f {0,1}n → {0,1}
by a circuit of size .C 2n/(10n)

Counting argument:

• The number of functions from to : {0,1}n {0,1}
Proof:

Circuit Lower Bounds
Theorem: For every , there exists a function : that cannot be computed n > 1 f {0,1}n → {0,1}
by a circuit of size .C 2n/(10n)

Counting argument:

• The number of functions from to : {0,1}n {0,1} 22n

Proof:

Circuit Lower Bounds
Theorem: For every , there exists a function : that cannot be computed n > 1 f {0,1}n → {0,1}
by a circuit of size .C 2n/(10n)

Counting argument:

• The number of functions from to : {0,1}n {0,1}

• The number of bits required to encode a circuit of size : S

22n

Proof:

Circuit Lower Bounds
Theorem: For every , there exists a function : that cannot be computed n > 1 f {0,1}n → {0,1}
by a circuit of size .C 2n/(10n)

Counting argument:

• The number of functions from to : {0,1}n {0,1}

• The number of bits required to encode a circuit of size : S

22n

S

Proof:

Circuit Lower Bounds
Theorem: For every , there exists a function : that cannot be computed n > 1 f {0,1}n → {0,1}
by a circuit of size .C 2n/(10n)

Counting argument:

• The number of functions from to : {0,1}n {0,1}

• The number of bits required to encode a circuit of size : S

22n

S

of vertices

Proof:

Circuit Lower Bounds
Theorem: For every , there exists a function : that cannot be computed n > 1 f {0,1}n → {0,1}
by a circuit of size .C 2n/(10n)

Counting argument:

• The number of functions from to : {0,1}n {0,1}

• The number of bits required to encode a circuit of size : S

22n

S

of vertices

Proof:

× (2 log S

Circuit Lower Bounds
Theorem: For every , there exists a function : that cannot be computed n > 1 f {0,1}n → {0,1}
by a circuit of size .C 2n/(10n)

Counting argument:

• The number of functions from to : {0,1}n {0,1}

• The number of bits required to encode a circuit of size : S

22n

S

of vertices

vertices giving edgesProof:

× (2 log S

Circuit Lower Bounds
Theorem: For every , there exists a function : that cannot be computed n > 1 f {0,1}n → {0,1}
by a circuit of size .C 2n/(10n)

Counting argument:

• The number of functions from to : {0,1}n {0,1}

• The number of bits required to encode a circuit of size : S

22n

S

of vertices

vertices giving edgesProof:

× (2 log S + log S)

Circuit Lower Bounds
Theorem: For every , there exists a function : that cannot be computed n > 1 f {0,1}n → {0,1}
by a circuit of size .C 2n/(10n)

Counting argument:

• The number of functions from to : {0,1}n {0,1}

• The number of bits required to encode a circuit of size : S

22n

S

of vertices

vertices giving edges

labels: , xi ∧ , ∨ , ¬

Proof:

× (2 log S + log S)

Circuit Lower Bounds
Theorem: For every , there exists a function : that cannot be computed n > 1 f {0,1}n → {0,1}
by a circuit of size .C 2n/(10n)

Counting argument:

• The number of functions from to : {0,1}n {0,1}

• The number of bits required to encode a circuit of size : S

22n

S

of vertices

vertices giving edges

labels: , xi ∧ , ∨ , ¬

Proof:

× (2 log S × 3 + log S)

Circuit Lower Bounds
Theorem: For every , there exists a function : that cannot be computed n > 1 f {0,1}n → {0,1}
by a circuit of size .C 2n/(10n)

Counting argument:

• The number of functions from to : {0,1}n {0,1}

• The number of bits required to encode a circuit of size : S

22n

S

of vertices

vertices giving edges

labels: , xi ∧ , ∨ , ¬

unique

encodingProof:

× (2 log S × 3 + log S)

Circuit Lower Bounds
Theorem: For every , there exists a function : that cannot be computed n > 1 f {0,1}n → {0,1}
by a circuit of size .C 2n/(10n)

Counting argument:

• The number of functions from to : {0,1}n {0,1}

• The number of bits required to encode a circuit of size : S

22n

S

of vertices

vertices giving edges

labels: , xi ∧ , ∨ , ¬

unique

encoding

• The number of circuits of size is at most: S 29S log S

Proof:

× (2 log S × 3 + log S)

Circuit Lower Bounds
Theorem: For every , there exists a function : that cannot be computed n > 1 f {0,1}n → {0,1}
by a circuit of size .C 2n/(10n)

Counting argument:

• The number of functions from to : {0,1}n {0,1}

• The number of bits required to encode a circuit of size : S

22n

S

of vertices

vertices giving edges

labels: , xi ∧ , ∨ , ¬

unique

encoding

• The number of circuits of size is at most: S 29S log S

Set .S = 2n/(10n)

Proof:

× (2 log S × 3 + log S)

Circuit Lower Bounds
Theorem: For every , there exists a function : that cannot be computed n > 1 f {0,1}n → {0,1}
by a circuit of size .C 2n/(10n)

Counting argument:

• The number of functions from to : {0,1}n {0,1}

• The number of bits required to encode a circuit of size : S

22n

S

of vertices

vertices giving edges

labels: , xi ∧ , ∨ , ¬

unique

encoding

• The number of circuits of size is at most: S 29S log S

Set .S = 2n/(10n) Then, the number of circuits of size is at most:S

Proof:

× (2 log S × 3 + log S)

Circuit Lower Bounds
Theorem: For every , there exists a function : that cannot be computed n > 1 f {0,1}n → {0,1}
by a circuit of size .C 2n/(10n)

Counting argument:

• The number of functions from to : {0,1}n {0,1}

• The number of bits required to encode a circuit of size : S

22n

S

of vertices

vertices giving edges

labels: , xi ∧ , ∨ , ¬

unique

encoding

• The number of circuits of size is at most: S 29S log S

Set .S = 2n/(10n) Then, the number of circuits of size is at most:S

29S log S

Proof:

× (2 log S × 3 + log S)

Circuit Lower Bounds
Theorem: For every , there exists a function : that cannot be computed n > 1 f {0,1}n → {0,1}
by a circuit of size .C 2n/(10n)

Counting argument:

• The number of functions from to : {0,1}n {0,1}

• The number of bits required to encode a circuit of size : S

22n

S

of vertices

vertices giving edges

labels: , xi ∧ , ∨ , ¬

unique

encoding

• The number of circuits of size is at most: S 29S log S

Set .S = 2n/(10n) Then, the number of circuits of size is at most:S

29S log S < 29.2n/(10n).n

Proof:

× (2 log S × 3 + log S)

Circuit Lower Bounds
Theorem: For every , there exists a function : that cannot be computed n > 1 f {0,1}n → {0,1}
by a circuit of size .C 2n/(10n)

Counting argument:

• The number of functions from to : {0,1}n {0,1}

• The number of bits required to encode a circuit of size : S

22n

S

of vertices

vertices giving edges

labels: , xi ∧ , ∨ , ¬

unique

encoding

• The number of circuits of size is at most: S 29S log S

Set .S = 2n/(10n) Then, the number of circuits of size is at most:S

29S log S < 29.2n/(10n).n < 22n

Proof:

× (2 log S × 3 + log S)

Circuit Lower Bounds
Theorem: For every , there exists a function : that cannot be computed n > 1 f {0,1}n → {0,1}
by a circuit of size .C 2n/(10n)

Counting argument:

• The number of functions from to : {0,1}n {0,1}

• The number of bits required to encode a circuit of size : S

22n

S

of vertices

vertices giving edges

labels: , xi ∧ , ∨ , ¬

unique

encoding

• The number of circuits of size is at most: S 29S log S

Set .S = 2n/(10n) Then, the number of circuits of size is at most:S

29S log S < 29.2n/(10n).n < 22n

The number of functions exceeds the number of circuits.

Proof:

× (2 log S × 3 + log S)

Circuit Lower Bounds
Theorem: For every , there exists a function : that cannot be computed n > 1 f {0,1}n → {0,1}
by a circuit of size .C 2n/(10n)

Counting argument:

• The number of functions from to : {0,1}n {0,1}

• The number of bits required to encode a circuit of size : S

22n

S

of vertices

vertices giving edges

labels: , xi ∧ , ∨ , ¬

unique

encoding

• The number of circuits of size is at most: S 29S log S

Set .S = 2n/(10n) Then, the number of circuits of size is at most:S

29S log S < 29.2n/(10n).n < 22n

The number of functions exceeds the number of circuits.

Proof:

× (2 log S × 3 + log S)

 some functions from to cannot be computed by circuits of size ∴ {0,1}n 0,1 2n/(10n)

Circuit Lower Bounds
Theorem: For every , there exists a function : that cannot be computed n > 1 f {0,1}n → {0,1}
by a circuit of size .C 2n/(10n)

Counting argument:

• The number of functions from to : {0,1}n {0,1}

• The number of bits required to encode a circuit of size : S

22n

S

of vertices

vertices giving edges

labels: , xi ∧ , ∨ , ¬

unique

encoding

• The number of circuits of size is at most: S 29S log S

Set .S = 2n/(10n) Then, the number of circuits of size is at most:S

29S log S < 29.2n/(10n).n < 22n

The number of functions exceeds the number of circuits.

Proof:

× (2 log S × 3 + log S)

 some functions from to cannot be computed by circuits of size ∴ {0,1}n 0,1 2n/(10n)

